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Abstract: We show how structuring of matter can lead to second order optical nonlinearity.
Coulomb interactions involving bound electrons cause a nonlinear optical response at boundaries.
We demonstrate that second order nonlinearity is proportional to the perimeter of a planar
structure cut from a centrosymmetric lattice of harmonic oscillators. This proportionality and
our model can instruct the design of dielectric nonlinear particles, surfaces and metamaterials for
optical second harmonic generation.
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1. Introduction

The second-order nonlinear interaction of two waves in a medium can generate a third wave
at a combinational frequency, underpinning the phenomena of second harmonic generation,
optical rectification, parametric down conversion, sum- and difference frequency generation.
Conventionally, second harmonic is generated in crystals with symmetry lacking an inversion
centre, however, centrosymmetric media can generate second harmonic waves in the presence of
inhomogeneity associated with interfaces [1–9], optical field gradients [9–11] or chirality [12]. A
considerable effort is now focused on artificial nonlinear materials that can be manufactured by
top-down nanofabrication processes: second harmonic can be efficiently generated in structured
metallic and dielectric films, as well as metasurfaces with asymmetric patterns even if the bulk
of the constituent materials is centrosymmetric [13–22].

In this paper we report a classical oscillator model that predicts second-order nonlinearity in a
structured dielectric film made of a centrosymmetric dielectric material. The film is structured
into flakes (particles). We describe the dielectric material of the film as a two-dimensional lattice
of harmonic oscillators with optical electrons. By design, the oscillators do not exhibit any
second order nonlinear response in isolation. However, we show that flakes of such structured
films can generate second harmonic where nonlinearity emerges from the Coulomb interactions
of charges of neighbouring optical electrons and nuclei in the confined anisotropic environment
of the flake. The model leads to the following scaling rules: for a particle of a given shape
and orientation (relative to the driving field), the first order polarizability is proportional to the
particle surface while the second order polarizability is proportional to the particle perimeter.

2. Results and discussion

2.1. Optical nonlinearity of structured dielectric films

In the model we consider a flake consisting of N atoms and describe atom k as a classical Lorentz
oscillator [23] with an optical electron with coordinate rk(t) bound to a stationary nucleus at
Rk. As is standard Lorentz model approximation, we assume that the electron and the nucleus
are elastically bound which gives rise to a linear restoring force and the atom’s linear optical
response. In order to account for the influence of the N-1 other atoms on the optical electron k,
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we consider the Coulomb interactions of the optical electron with remaining electrons and nuclei.
The resulting potential energy Uk is

Uk =
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where q and m are the electron charge and mass, and ω0 is the angular resonance frequency of the
isolated harmonic oscillator. The resulting equation of motion in an optical field E(t) becomes
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where γ is the damping frequency. A similar approach has been previously employed to
study linear macroscopic properties of dielectrics [24] and for treating surface nonlinearity in
uniform planar surfaces [7,25–28]. Here, our focus is on highly structured materials. Second
harmonic generation is strongly shape-dependent and our model is applicable to planar dielectric
structures of any shape. Therefore, it complements existing models that describe second harmonic
generation in specific materials and/or shapes [29–32], and symmetry-based selection rules
[33,34] that only identify cases where second harmonic generation is forbidden.

In order to predict the edge nonlinearity of a structured dielectric film, such as a metamaterial,
we consider plane wave illumination (along z) of a two-dimensional (2D) lattice of ‘atoms’
consisting of charges that are confined to the xy-plane [(see Fig. 1(a)]. The electromagnetic
response of the single atom is strictly linear and arises from a harmonic potential as described
above. The nonlinear response arises exclusively due to inter-atomic Coulomb interactions.
The ∝1/r2 dependence of the Coulomb force, where r is the inter-charge separation, gives rise
a nonlinear response of optical electrons in collections of coupled atoms, which is illustrated
by curved optical electron trajectories in Fig. 1(b). We note, that similar nonlinearity arising
from electrostatic interactions has been considered as ‘multipole nonlinearity’ in the context of
nonlinear plasmonic metamaterials [35]. We apply this basic principle of one-to-one coupling via
the Coulomb force to modelling of the response of large collections of atoms that form particles
with a hexagonal lattice. In order to increase the speed and stability of numerical modelling, a
perturbative scheme is used. In the first stage, the linear response of N coupled atoms is found.
This linear response is then used, in the second stage, as a source for determining the nonlinear
response. In order to approximate a typical atomic response in dielectrics such as SiN, ITO and
TiOx, we choose ω0≈9.4×1015 s−1 and γ=0.01ω0. (This ω0 corresponds to a UV resonance at
200 nm wavelength.) The amplitude of the driving electric field (E) is chosen to be 8.68×107

V/m, which corresponds to pump light of 1 GW/cm2 intensity. The wavelength of the pump is
that of the Nd:YAG laser (1064 nm, angular frequency ω≈0.19×ω0), chosen purely because
it is a common wavelength for the nonlinear optics community and because it lies far outside
the resonant region defined by the choice of ω0 and γ. The lattice constant, i.e. the smallest
inter-atomic spacing, is 0.5 nm in all cases.

We will calculate the total linear and non-linear electric dipole induced in collections of atoms –
2D particles carved out of a hexagonal lattice by imposing a closed border. Given a displacement
of the kth electron relative to its nucleus, rk-Rk, the electric dipole due to the kth atom is dk=q(rk
-Rk), and the total electric dipole is p=

∑
k dk, which can be separated into linear and nonlinear

components, p(1), p(2), . . . , oscillating at the driving frequency ω and its harmonics, 2ω, . . . .
Calculation times for the structures considered below – containing up to 3691 atoms – are up

to 32 seconds in MATLAB R2018b on a Windows 10 computer with Intel Core i5-6600 3.3 GHz
CPU and 32 GB RAM.
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Fig. 1. Model for second harmonic generation of interacting atoms in a dielectric nanoparti-
cle. (a) The atoms are modelled as damped harmonic oscillators consisting of an optical
electron constrained to move in the xy-plane and a positively charged stationary nucleus
at the atom’s centre. (b) The nonlinear optical response of a nanoparticle originates from
the Coulomb interactions between optical electrons and other atoms. Due to the finite size
of the nanoparticle, the Coulomb force acting on optical electrons from other electrons
and nuclei becomes direction-dependent. For example, in a two-dimensional ‘particle’ of
triangular shape, the trajectories of electrons driven by incident light field E(t) are curved:
displacement of the charge becomes a nonlinear function of the driving field and optical
harmonics are generated.

2.2. Triangular particles

Irrespective of the origin of nonlinear response, the vectorial nature of the electromagnetic
fields implies that a total second-order nonlinear response of a 2D particle driven by in-plane
optical fields, i.e. a total induced non-linear electric dipole, is allowed only for structures with
three-fold rotational symmetry, or no rotational symmetry at all [33,34]. We will therefore focus
on two-dimensional particles with three-fold overall rotational symmetry, the simplest case that
permits second-order nonlinearity, represented by equilateral triangular arrangements of atoms
cut out of a hexagonal lattice.
We use the notation dy

xx to denote per-atom second-order nonlinear electric dipole along the
y-axis induced due to driving field polarized along the x-axis. The other components follow
in the same way. Figure 2 shows the second-order nonlinear electric dipole induced in each
atom of a triangular 2D particle, cut out of a hexagonal lattice of atoms. Several important
phenomena are readily observable: (1) the quadratic nonlinear dipole is always weakest in the
central region of the triangle – as one would expect for a centrosymmetric arrangement of atoms
(hexagonal lattice); (2) a nonlinear response at the edge seems to be induced in all cases with
similar amplitude, but different phases of second harmonic response at different edges can yield
vanishing (components of) total second harmonic response for a whole particle. x-polarized
field [Fig. 2(a)] as well as y-polarized field [Fig. 2(c)] create a second-order nonlinear response
in the x-direction along the edges of the triangle, but the nonlinear response of opposite edges
cancels out, thus the x-component of the total nonlinear electric dipole is zero, as it should be for
a particle with mirror symmetry, x↔ -x. In contrast, the y-polarized second-order nonlinear
response resulting from x-polarized [Fig. 2(b)] and y-polarized [Fig. 2(d)] illumination does not
cancel.
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Fig. 2. Second order nonlinear response in a triangular nanoparticle. Colour maps show the
α-component of the atomic dipoles dαββ at frequency 2ω when the particle is driven by light
field Eβ at frequency ω polarized along the β direction. Note the strong second harmonic
(SH) response at the edges.

2.3. Particle symmetry

Basic symmetry considerations [34] show that total second harmonic response is forbidden for
2-fold rotationally symmetric shapes such as a rectangle, but is allowed for 1-fold symmetric
shapes such as isosceles triangle. An interesting question to ask is how this selection rule appears
when a triangle is gradually converted via a trapezoid into a rectangle. How does the total
nonlinear electric dipole vanish? How does it depend on changes in geometry (for a given driving
field)? What effect does the finite lattice size have on the changes in the induced nonlinear electric
dipole? To address this, a series of calculations has been carried out for symmetric triangular,
trapezoidal and rectangular particles driven by the same electric field along the symmetry axis
(y-axis). The results are shown in Fig. 3. We fix the height and bottom side length of an isosceles
trapezoid, and increase the slope of its left and right sides by extending its top side from 0 nm to
30 nm, see Fig. 3(a). The effect of such changes in particle symmetry, from three-fold rotational
symmetry via absence of rotational symmetry to two-fold rotational symmetry, on the magnitude
of the total linear dipole (p(1)) and the total second-order dipole (p(2)) is shown in Fig. 3(b). The
magnitude of the total linear dipole (p(1)) grows linearly as the triangle evolves into a rectangle.
This is consistent with the linear polarizability of each atom being roughly independent of its
neighbourhood – so more atoms translate into correspondingly higher total linear electric dipole.
Indeed, we find that the linear dipole per atom remains constant. Clearly, such a simple response
is a consequence of operating in the off-resonance regime. (The driving frequency to atomic
resonant frequency ratio is ω/ω0≈0.19.) In contrast, the magnitude of the total quadratic electric
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dipole (p(2)) decreases linearly with the increase in the top side length. This can be explained
by considering the plots of the per-atom quadratic electric dipole (dy

yy) for the rectangle and the
triangle [Figs. 3(c), 3(d)]. In the rectangle, the second-order electric dipole excitation at the top
and bottom sides is of equal magnitude but opposite phase, giving zero total effect. In case of
the triangle, this cancellation does not occur. The gradual drop in the magnitude of the total
second-order dipole with increasing top side length, shown in Fig. 3(b), is consistent with the
cancellation of second-order dipole contributions from atoms in corresponding sections of the top
and bottom sides, which leads to complete cancellation of the particle’s second-order nonlinear
response as it becomes rectangular. Thus, while local edge nonlinearity is also present for
particle shapes with inversion symmetry, anti-phase nonlinear response of opposite edges causes
cancellation of the overall second-order nonlinear response of inversion-symmetric particles.

Fig. 3. Removal of second harmonic response by introduction of inversion symmetry of
the nanoparticle. (a) The schematic shows a transition from a triangular to a rectangular
nanoparticle. (b) The magnitudes of the total dipole moments p(1) and p(2) at the fundamental
and second harmonic frequencies induced by a y-polarized fundamental wave in a particle
evolving from lack of inversion symmetry to inversion symmetry. Colour maps (c) and
(d) show the y-component of the atomic dipole dy

yy at frequency 2ω for the initial and final
particle shapes.

We note that second-order nonlinear response with same magnitude and opposite phase for
opposite edges (one rotated 180° relative to the other) has an interesting implication for inverse
structures (a particle and the corresponding particle-shaped hole). An inverse structure results
from interchanging which side of the edge the material is on, which is equivalent to a 180°
rotation of each segment of particle edge. Therefore, inverse structures must have second-order
dipoles of same magnitude and opposite sign.

2.4. Particle size

The dipoles in Fig. 3 show remarkably smooth dependencies on particle geometry, despite the fact
that the length of the longest sides of each shape is just 61 atoms. One can therefore conjecture
that whilst the nonlinear response at each point on the edge may be strongly influenced by the local
orientation of the edge-cut relative to the driving field and atomic lattice, the total second-order



Research Article Vol. 28, No. 22 / 26 October 2020 / Optics Express 33351

nonlinear response can be approximated by treating edges as ‘smooth’ even in the presence of
a coarse lattice. This conjecture can be tested by choosing a particle of some shape, changing
its overall size (whilst keeping the lattice size fixed), driving the particle with electric field of
fixed magnitude and orientation, and calculating the total induced electric dipole. The results of
this test, for the case of triangular particles, are shown in Fig. 4. The linear and second-order
nonlinear induced electric dipoles have been calculated for triangles with side lengths from 1
nm (6 atoms in total) to 17 nm (630 atoms). Despite the coarse lattice (lattice constant of 0.5
nm), the total linear electric dipole is proportional to the number of atoms, i.e. the linear electric
dipole per atom does not change much, see inset. In contrast, the total second-order nonlinear
electric dipole is proportional to the size S of the triangle’s edges, i.e. to the particle’s perimeter.
Thus, the overall quadratic nonlinear response in mesoscopic two-dimensional particles, with
centrosymmetric structure of the bulk, is proportional to the perimeter of the particle. We note
that size effects of (surface) second-order nonlinear response of metallic particles have been
investigated experimentally in the past, where an increase in second-order nonlinear response
with particle size has been observed for very small particles [36]. The noteworthy effect detected
here is that such behaviour persists to levels of just few atoms in dielectric particles.

Fig. 4. The effect of the size of nanostructures on their linear and nonlinear response.
The magnitudes of the total dipole moments p(1) (black line) and p(2) (blue line) at the
fundamental and second harmonic frequencies induced by a y-polarized fundamental wave
for triangular particles of increasing size, S (from 6 to 630 atoms total). The inset shows
linear and second harmonic responses per atom as functions of the total number of atoms N
in the triangle.

2.5. Optimization strategy

The proportionality of the total induced second-order nonlinear electric dipole to the perimeter
of the particle suggests a simple strategy of optimizing the non-linear response of mesoscopic
structures. As illustrated by Fig. 5, given a 2D particle with nonlinear response, such as an
equilateral triangle, an increased second-order nonlinear response can be achieved by substituting
the particle (triangle) with smaller particles of the same shape (triangles), which have a larger
combined perimeter and the same combined area. This process will increase the total length of
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edges, thus increasing the second-order nonlinear response, but will leave the overall number of
atoms (approximately) unchanged, thus preserving the linear response.

Fig. 5. Optimization of the second harmonic dipole response via nanostructuring.
(a) Schematic of a large equilateral triangle structure (cut out of a hexagonal lattice
of atoms) being divided into 4 and then 16 equilateral triangles. The overall area occupied
by the triangles remains the same, but the length of the perimeter doubles with every step.
(b) The distribution of the second harmonic (SH) dipole per atom along the y-direction,
excited by y-polarized driving field. (c) The magnitude of total linear dipole and total second
harmonic dipole for the cases considered in (b). The total linear dipole is almost the same in
all cases, since the number of atoms in the three arrangements is almost the same. The total
SH dipole is proportional to the total edge length, i.e. it doubles with every step.

We note that this method for maximizing the nanostructure’s nonlinear response will naturally
lead to a metasurface, i.e. a periodically structured film (Fig. 5). While a particle that is small in
comparison to the wavelength will radiate over a large solid angle, second harmonic generation
from a 2D array of nanostructures will become increasingly directed with increasing overall
size of the array. The direction(s) of second harmonic generation will be determined by phase
matching, i.e. by constructive interference of the fields radiated by all unit cells of the array.

While we consider 2D structures, we expect that our method can be extended to cover structured
films, that are thin in comparison to the wavelength under consideration, by treating interactions
between columns of atoms rather than individual atoms. For such structures, the overall nonlinear
response will increase with increasing thickness due to the increasing number of atoms on the
structure’s perimeter. However, as the thickness increases further, phase matching along the
thickness direction would need to be included to describe the overall nonlinear response.
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3. Conclusion

In summary, we have shown that second-order nonlinear optical response can arise from the
nonlinearity of inter-atomic Coulomb interactions – a universal mechanism, applicable to all
media. Coulomb interactions between neighbouring atoms cause nonlinear oscillations of charges
at the edges of 2D particles in response to light. Patterning enables second-order nonlinear
response even in case of normal incidence onto centrosymmetric dielectric films, where the
second-order nonlinear response is proportional to the perimeter of the patterned shape. The
proportionality is extremely robust and persists down to the level of just few atoms. Edge
nonlinearity, as described here, should be expected in a wide variety of metamaterials, photonic
crystals and other planar nonlinear nanophotonic structures driven by light at normal incidence.
It is of direct relevance to the rapidly growing range of applications of two-dimensional dielectric
metamaterials (metasurfaces) in nonlinear photonics and quantum optics.
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